Biological and mathematical modeling of melanocyte development.
نویسندگان
چکیده
We aim to evaluate environmental and genetic effects on the expansion/proliferation of committed single cells during embryonic development, using melanoblasts as a paradigm to model this phenomenon. Melanoblasts are a specific type of cell that display extensive cellular proliferation during development. However, the events controlling melanoblast expansion are still poorly understood due to insufficient knowledge concerning their number and distribution in the various skin compartments. We show that melanoblast expansion is tightly controlled both spatially and temporally, with little variation between embryos. We established a mathematical model reflecting the main cellular mechanisms involved in melanoblast expansion, including proliferation and migration from the dermis to epidermis. In association with biological information, the model allows the calculation of doubling times for melanoblasts, revealing that dermal and epidermal melanoblasts have short but different doubling times. Moreover, the number of trunk founder melanoblasts at E8.5 was estimated to be 16, a population impossible to count by classical biological approaches. We also assessed the importance of the genetic background by studying gain- and loss-of-function β-catenin mutants in the melanocyte lineage. We found that any alteration of β-catenin activity, whether positive or negative, reduced both dermal and epidermal melanoblast proliferation. Finally, we determined that the pool of dermal melanoblasts remains constant in wild-type and mutant embryos during development, implying that specific control mechanisms associated with cell division ensure half of the cells at each cell division to migrate from the dermis to the epidermis. Modeling melanoblast expansion revealed novel links between cell division, cell localization within the embryo and appropriate feedback control through β-catenin.
منابع مشابه
Mathematical Modeling of the Temperature-Dependent Growth of Living Systems
In this investigation a non-equilibrium thermodynamic model of the temperature dependent biological growth of a living systems has been analyzed. The results are derived on the basis of Gompertzian growth equation. In this model, we have considered the temperature dependent growth rate and development parameter. The non-equilibrium thermodynamic model is also considered for exploring the variat...
متن کاملBiological and Mathematical Approaches to Vascular Development
In this paper, biological and mathematical approaches to vascular development are presented with the comparison of several modeling and simulation methods with respect to the growth of vascular trees and wound healing. The links between mathematical modeling and biological mechanism of angiogenesis are discussed. Suggestions for further modeling are given.
متن کاملDynamic Modeling of Granular Sludge in UASB Reactors
n this paper, a mathematical model has been derived to predict the granulation time of anaerobic sludge in UASB reactors. In the proposed model, some physical, chemical and biological parameters affecting the granulation phenomena have been considered. To validate the model, 12 pilot-scale experiments in 4 UASB reactors are carried out and the results are discussed here. The reactors are starte...
متن کاملA New Five-Parameter Distribution: Properties and Applications
In this paper, a new five-parameter lifetime and reliability distribution named “the exponentiated Uniform-Pareto distribution (EU-PD),” has been suggested that it has a bathtub-shaped and inverse bathtub-shape for modeling lifetime data. This distribution has applications in economics, actuarial modelling, reliability modeling, lifetime and biological sciences. Firstly, the mathematical and st...
متن کامل21-P013 Development of intrinsic lung neurons from foregut-derived neural crest cells
main transcription factors, Sox10 and Mifta (microphthalmiaassociated transcription factor), are already known to be involved in this process [Dutton et al., 2001; Elworthy et al., 2003]. Fate specification of melanocytes depends upon Sox10, and on Wnt signalling, to mediate regulation of Mitfa transcription. In contrast, the precise mechanism resulting in stable melanocyte differentiation rema...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 138 18 شماره
صفحات -
تاریخ انتشار 2011